Funding from The Leukemia & Lymphoma Society (LLS) can lead to scientific breakthroughs that will improve and save the lives of patients.
The LLS Research Team oversees the organization's research stray to support cutting-edge research for every type of blood cancer, including leukemia, lymphoma, myeloma.
Take a look at the current active, extraordinary LLS-funded research projects.
337 results
Refine Your Search
Temple University
Myeloproliferative neoplasms (MPNs) carry JAK2(V617F), MPL(W515L) and mutations in calreticulin (CALRmut) often accompanied by mutations in TET2, ASXL1, DNMT3A, EZH2, and other genes. We will develop a strategy based on gene mutation profiling to identify MPNs displaying specific defects in DNA repair. These defects will be then explored by specific DNA repair inhibitors to eliminate quiescent and proliferating MPN stem and progenitor cells without affecting normal cells and tissues.
Project Term: July 1, 2021 - June 30, 2024
Beckman Research Institute of the City of Hope
Refractory pediatric B- and T- lymphoid cancers exhibit hyperactivation of MYC and its downstream pathways. Experimentally, MYC inactivation sustains tumor regression. However, MYC’s requirement in normal B/T-cells has hampered the development of MYC inhibitors. Recently, we showed that MYC-High B/T-Lymphoid Neoplasms (B/T-MLN) evade Natural Killer (NK) cell surveillance. Hence, we propose to develop targeted off-the-shelf NK therapies as an alternative to MYC inhibition for treating B/T-MLN.
Project Term: July 1, 2021 - June 30, 2024
The Children's Hospital of Philadelphia
Dr Tasian’s scientific passion is successful development of precision medicine therapies for high-risk childhood leukemia. Her translational laboratory research program focuses upon investigation of kinase inhibitors and chimeric antigen receptor (CAR) T cell immunotherapies in childhood ALL and AML using primary patient specimens and patient-derived xenograft models. Through her laboratory and clinical research, she aspires to improve cure rates and minimize toxicities for children with leukemia.
Project Term: October 1, 2021 - September 30, 2026
University of Perugia. Department of Medicine and Surgery
Hairy cell leukemia (HCL) is very sensitive to chemotherapy, whose toxicity to the bone marrow and the immune system is however concerning. We have established vemurafenib plus rituximab as a very effective chemotherapy-free regimen in relapsed/refractory HCL (NEJM, in press). Here, we will test it in a clinical trial against a chemotherapy-based standard of care represented by cladribine plus rituximab, aiming at lower toxicity and similar efficacy.
Project Term: January 1, 2023 - December 31, 2025