337 results

Refine Your Search

Brian Dalton
Johns Hopkins University

Mutations in the spliceosome gene SF3B1 are common in myeloid malignancies, but they are currently untargetable. Our previous work has shown that SF3B1 mutations reprogram energy metabolism and create vulnerability to restriction of the nonessential amino acid serine. Here we propose a preclinical project studying PEGylated cystathioinine beta synthase (pCBS), a recombinant enzyme that catabolizes serine, as a treatment for SF3B1-mutant myeloid malignancies.

Project Term: October 1, 2021 - September 30, 2024

Jaehyuk Choi
Northwestern University

Coming soon.

Project Term: July 1, 2021 - June 30, 2026

Jianhua Yu
Beckman Research Institute of the City of Hope

This project is designed to develop a novel cell therapy to treat relapse/refractory multiple myeloma (MM), an incurable cancer. We target BCMA, a protein highly expressed on MM compared to normal cells, with CAR T cells that also secrete a bispecific antibody that can engage all cytolytic cells, including various endogenous T cells, natural killer (NK) cells, and NKT cells to kill MM cells. We aim to complete all preclinical studies so that the therapy is ready for future clinical studies.

Project Term: July 1, 2018 - June 30, 2023

Liran Shlush
Weizmann Institute of Science

In the current study we propose, based on our preliminary results, that we can reliably identify pre-AML cases out of the many individuals with age related clonal hematopoiesis (ARCH) based on clinical parameters thereby limiting the population that needs to undergo molecular testing. We have also developed a predictive model that can identify pre-AML cases years before diagnosis. We now propose to utilize this knowledge to treat high-risk individuals with ARCH, at a time point before they have developed disease, by targeting the driving alterations most associated with AML development.

Project Term: July 1, 2018 - June 30, 2023