Funding from Blood Cancer United can lead to scientific breakthroughs that will improve and save the lives of patients.
The Blood Cancer United Research Team oversees the organization's research strategy to support cutting-edge research for every type of blood cancer, including leukemia, lymphoma, and myeloma.
Take a look at all the currently active, extraordinary Blood Cancer United-funded research projects.
337 results
Refine Your Search
Icahn School of Medicine at Mount Sinai
T-cell mediated therapies are all impeded by the same cause- tumoral antigen (Ag) escape: rare Ag– cells in tumors survive the initial attack and lead to relapse. We recently took an innovative approach by enhancing T cells' ability to attack the Ag- cells during the initial treatment. That process is modular by pharmaceutical intervention.
The proposed project will analyze cryopreserved excisional B-NHL biopsies to identify possible pharmaceutical targets potentiating their 'vulnerability’.
Project Term: July 1, 2024 - June 30, 2026
Perelman School of Medicine at the University of Pennsylvania
Bispecific antibodies are a new, highly effective immunotherapy for multiple myeloma. Most bispecific antibody therapies have been tested as continuous therapies in which patients continue receiving the treatment until the myeloma starts growing again. Preliminary results suggest that patients with good responses may be able to stop therapy and enjoy a period of time off-therapy with close observation, which may limit long term toxicities caused by continuous therapy. We propose a clinical trial to test this limited-duration approach with recently approved bispecific antibodies for multiple myeloma.
Project Term: February 7, 2024 - June 30, 2027
Mayo Clinic
Although many patients with IgM MGUS remain asymptomatic, some of them progress to Waldenstrom Macroglobulinemia (WM) requiring treatment. Recently, we have found that the hereditable alteration of IRF4 gene increases the risk to develop WM, however little is known on the molecular mechanisms responsible for this feature. In this project, we aim to elucidate the role of the germline alteration of IRF4 in promoting WM through oncogenic cooperation with MYD88 and dysregulated immune microenvironment, ultimately paving the way for novel precision therapies for this patient population.
Project Term: August 21, 2023 - August 20, 2025
Memorial Sloan Kettering Cancer Center
Angioimmunoblastic T-cell lymphoma is a rare, aggressive form of T-cell lymphoma associated with poor clinical outcomes in response to current therapeutic approaches. Recurrent oncogenic mutations in isocitrate dehydrogenase 2 (IDH2) have been identified in patients with angioimmunoblastic T-cell lymphoma and this represents a targetable lesion in other malignancies. However, comprehensive investigations of mutant IDH2 inhibition in angioimmunoblastic T-cell lymphoma are lacking, and this may represent a new therapeutic avenue for a patient population in need of newer treatments
Project Term: July 2, 2023 - June 30, 2026
Dana-Farber Cancer Institute
We are conducting a clinical trial testing a novel form of immunotherapy, called a bispecific antibody, as part of initial treatment for patients with follicular lymphoma. The goal of the trial is two-fold: 1) to establish a highly effective, chemotherapy-free treatment option for patients with follicular lymphoma, and 2) to establish predictors of response and toxicity that can guide treatment decisions for future patients with follicular lymphoma.
Project Term: July 1, 2024 - June 30, 2027
Maine Medical Center
Our project’s goal is to change how multiple myeloma is understood and treated by interrogating a novel part of the cellular “soil” (the bone marrow adipocyte), in which myeloma cells, or “seeds”, land and grow. We will discover new forms of cancer drug resistance that are driven by adipocyte-derived factors and the fatty acid binding proteins. This work will expose new ways to overcome drug resistance to improve survival and quality of life for myeloma and other hematological cancer patients.
Project Term: July 1, 2024 - June 30, 2029
The University of Melbourne
Outcomes for acute myeloid leukemia (AML) and multiple myeloma (MM) patients remain inadequate and new treatment options to combat resistance against existing agents are urgently needed. My research aims to identify and target selective vulnerabilities of AML and MM cells. I am particularly interested in epigenetic and metabolic pathways that control self-renewal and differentiation of hematopoietic cells and that can be leveraged to modulate cell fate for therapeutic benefit.
Project Term: July 1, 2024 - June 30, 2029
Memorial Sloan Kettering Cancer Center
The primary focus of research is to better understand mechanisms of resistance to immunotherapies and design treatment approaches to improve outcomes. I hope to accomplish this by conducting clinical trials that concurrently target both BCMA and GPRC5D in patients with advanced multiple myeloma and by studying antigen expression, tumor genetics, and T cell characteristics to better understand mechanisms of resistance. The goal is to develop more effective immune treatments for myeloma.
Project Term: July 1, 2024 - June 30, 2029
Memorial Sloan Kettering Cancer Center
Mutations in RNA splicing factors, particularly those involving the core splicing factor SF3B1 are amongst the most common mutations found in myeloid neoplasms. We recently identified a cofactor protein known as GPATCH8 which is required for the aberrant function of mutant SF3B1. We now seek to understand and target the ways in which GPATCH8 and SF3B1 interact. In so doing we hope to develop new treatments for leukemias containing mutant splicing factors.
Project Term: July 1, 2024 - June 30, 2027
Memorial Sloan Kettering Cancer Center
We are evaluating two parallel clinical trials with synergistic immunotherapies in mantle cell lymphoma (MCL), including 1) tafasitamab and lenalidomide and 2) glofitamab and lenalidomide. We will investigate how these treatments impact the MCL immune microenvironment and mediate anti-tumor immune responses, and will correlate these changes with outcome.
Our goal is to develop safe, effective, and "off-the-shelf" immunotherapies to improve outcomes for patients with relapsed, refractory MCL.
Project Term: July 1, 2024 - June 30, 2029
The University of Alabama at Birmingham
Advances in the treatment of Langerhans cell histiocytosis and Erdheim-Chester disease have led to a growing survivor population; however, there is a lack of information regarding the long-term outcomes, healthcare needs, and health-related quality of life in the era of targeted therapies. We propose the creation of a large national cohort of survivors with histiocytosis to address unanswered questions, eventually leading to targeted survivorship programs for this vulnerable population.
Project Term: July 1, 2024 - June 30, 2029
Cincinnati Children’s Hospital Medical Center
Vitamin A is safe, well tolerated and positively affects gut immune health. Graft versus host disease (GVHD) is a life-threatening complication of bone marrow transplant (BMT) which happens due to inflammatory changes in the gut. We harnessed the anti-inflammatory properties of vitamin A by giving it to children before bone marrow transplant (BMT) and showed reduction in acute gut and moderate/severe chronic GVHD. We will validate our findings in this currently proposed study of an independent group of adult BMT patients. We will give vitamin A or placebo before BMT to adult BMT patients and observe for reduction of chronic GVHD in vitamin A recipients compared to placebo. This study will be a step forward in adoption of vitamin A as a universal strategy to prevent GVHD which is affordable ($1.25 for entire treatment), non-toxic, and doesn’t suppress the immune system.
Project Term: October 1, 2024 - September 30, 2027
Who we fund
Learn more about the inspiring blood cancer scientists we support—and leading biotech companies we partner with— who are working to find cures and help blood cancer patients live longer, better lives.
Research Grants
We award grants for studies that range from basic blood cancer research to pioneering clinical trials. For more than seventy years, Blood Cancer United support has been instrumental in the development of the vast majority of breakthroughs in blood cancer treatment.
Therapy Acceleration Program ®(TAP)
TAP is a mission-driven, strategic venture philanthropy initiative that seeks to accelerate the development of innovative blood cancer therapeutics and change the standard of care while also generating a return on investment for the Blood Cancer United mission. TAP collaborates with biotech companies to support the development of novel platforms, first-in-class assets addressing high unmet medical needs, emerging patient populations, and orphan indications.