Funding from Blood Cancer United can lead to scientific breakthroughs that will improve and save the lives of patients.
The Blood Cancer United Research Team oversees the organization's research strategy to support cutting-edge research for every type of blood cancer, including leukemia, lymphoma, and myeloma.
Take a look at all the currently active, extraordinary Blood Cancer United-funded research projects.
337 results
Refine Your Search
Institute of Biomedical Research from Salamanca
The present project will investigate the ability of quantitative immune precipitation mass spectrometry (QIP-MS) to anticipate relapsed or progressive disease in peripheral blood samples from patients with multiple myeloma. In the context of the GEM2014MAIN trial (lenalidomide and dexamethasone plus or minus ixazomib as maintenance), we will assess the presence of disease by QIP-MS in parallel with conventional methods in serum and next generation flow in bone marrow samples.
Project Term: July 1, 2022 - June 30, 2025
Emory University
Multiple myeloma (MM) relies on the bone marrow (BM) niche to progress to refractory disease. We found that beta blockers alter BM niche elements fostering MM growth and also reduce MM cell survival. Our objective is to elucidate the cellular and metabolic basis of how beta adrenergic signals impact the BM niche and MM progression. Knowledge of the prophylactic and therapeutic utility of beta blockers in MM will unravel new means to target neural niche remodeling fueling this fatal malignancy.
Project Term: July 1, 2022 - June 30, 2025
Emory University
The goal of this project is to explore a novel immunologic therapeutic target for hematologic malignancies, SIGLEC15 (Sig15). The central hypothesis is that Sig15 is aberrantly expressed in malignant B cells, is released to attenuate immune responses and can be targeted therapeutically to promote immune responses to malignant hematopoietic cells. This work will accelerate therapeutic exploitation of the immune system for the treatment of leukemia and lymphoma by targeting Sig15.
Project Term: July 1, 2022 - June 30, 2025
Albert Einstein College of Medicine
The terrorist attacks on the World Trade Center (WTC) created an unprecedented environmental exposure to WTC aerosolized dust and gases that contained known and suspected carcinogens including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polychlorinated furans, dioxins and asbestos. Studies from Dr. Verma's group and others have reported an excess of cancer cases in the WTC-exposed Fire Department of the City of New York (FDNY) firefighters, including a trend towards higher incidence of multiple myeloma and leukemias. He now will be deep sequencing a large group of WTC-exposed firefighters to look for clonal hematopoiesis (CH) which is an acquisition of leukemia associated mutations associated with increases in the risk of hematologic cancer.
Project Term: June 1, 2022 - TBD
University of Minnesota
Common genetic variation explains a large share of childhood leukemia in children of European ancestry and may explain the differing incidence in children of other ancestries. The Childhood Cancer and Leukemia International Consortium seeks to better understand the genomic architecture of childhood leukemia risk using its collective genomic datasets comprising >20,000 diverse children with leukemia. The results will inform risk prediction for and possibly prevention of childhood leukemia.
Project Term: March 1, 2022 - February 29, 2024
Rhode Island Hospital
Dr. Olszewski’s trial will examine mosunetuzumab as a first-line treatment for follicular and marginal zone lymphomas—slow-growing types of B-cell lymphoma which remain incurable using current therapies. Mosunetuzumab is a “bispecific antibody” that can trigger an immune attack of patients’ own cancer-killing T-cells against the lymphoma. Dr. Olszewski team will look for characteristics that predict complete responses when this novel immunotherapy is applied as first-line treatment.
Project Term: April 1, 2022 - March 31, 2027
University of California San Francisco
The goal of our work is to use a “bench to bedside and back” approach to develop new treatments for patients with relapsed/refractory AML. Through genetic analysis of patients who relapse or do not respond to standard and investigational treatments, we discover potential resistance mechanisms. In the lab, we test novel drugs and identify new drug targets that may address these resistance mechanisms when used in combination with other therapies. The overall goal of our research program is to improve treatment options and survival of patients with refractory AML.
Project Term: October 1, 2021 - September 30, 2026
The Ohio State University
Young Black patients diagnosed with acute myeloid leukemia (AML) have significantly shorter survival compared to White patients. To comprehensively assess genetic, genomic and biologic contributors to the race-associated survival disparity, we propose a complementary approach that addresses major knowledge gaps in our current understanding of AML biology in Black patients, including the overdue characterization of the Black AML genome and subsequent delineation of biologic response to treatment.
Project Term: October 1, 2021 - September 30, 2024
Massachusetts General Hospital
RNA splicing is a central metabolic pathway that is frequently perturbed in hematopoietic malignancies (HMs) that harbor mutations in spliceosome components (most commonly affecting SRSF2, SF3B1, U2AF1, or ZRSR2). These mutations are particularly prevalent in myeloid malignancies (e.g., MDS, MDS/MPN, sAML), but recent pan-cancer studies have implicated aberrant splicing in >30 tumor types. The Project Leaders have probed the molecular consequences of aberrant splicing and identified critical pathways that are amenable to targeted inhibition, including the DNA damage response (Graubert/Walter), the nonsense-mediated RNA decay (NMD) pathway (You/Walter), the spliceosome itself (Abdel-Wahab/Walter/Graubert), and others. To date, effective therapies for HMs have not capitalized on these unique vulnerabilities. The goal of this SCOR is to generate testable clinical hypotheses based on careful mechanistic studies in pre-clinical models and to rapidly move these ideas into the clinic in the near term.
Project Term: October 1, 2021 - September 30, 2026
Dana-Farber Cancer Institute
We focus on blastic plasmacytoid dendritic cell neoplasm (BPDCN), an aggressive blood cancer with limited treatment options and poor outcomes. We want to understand what causes the disease, develop laboratory tools, and identify new treatments and ways to overcome therapy resistance. We have translated our discoveries to clinical trials. Our goal is to continue this bench to beside approach to develop the next generation of BPDCN therapies that improve survival and minimize treatment toxicity.
Project Term: October 1, 2021 - September 30, 2026
The University of Texas MD Anderson Cancer Center
In previous studies of recurrently amplified 1q21 genes in myeloma, we identified ILF2 as a modulator of the DNA repair pathway, which promotes adaptive responses to genotoxic stress. Thus, ILF2 may have clinical utility as a biomarker of aggressive myeloma and blocking the ILF2-mediated repair signaling may enhance the effectiveness of current DNA-damaging agent-based therapies. We are seeking to determine the feasibility of therapeutically targeting ILF2 with antisense nucleotides and identify DNA repair effectors whose loss of function induces synthetic lethality in ILF2-depleted myeloma.
Project Term: July 1, 2018 - June 30, 2023
TAP Partner
In February 2021, LLS made an equity investment in Caribou Biosciences to support "A Phase 1, Multicenter, Open-Label Study of CB-011, a CRISPR-Edited Allogeneic Anti-BCMA CAR-T Cell Therapy in Patients With Relapsed/Refractory Multiple Myeloma."
Caribou is a leading clinical-stage biotechnology company, co-founded by CRISPR pioneer and Nobel Prize winner Jennifer Doudna, Ph.D., using next-generation CRISPR genome-editing technology to develop “off-the-shelf” (allogeneic) CAR therapies for hard-to-treat blood cancers.
CB-011, Caribou’s second allogeneic CAR-T cell therapy, targets BCMA for the treatment of relapsed/refractory multiple myeloma and is immunologically cloaked for enhanced persistence. The CaMMouflage Phase 1 clinical trial, a multicenter, open-label study to evaluate the safety and efficacy of a single dose of CB-011 in adult patients with relapsed or refractory multiple myeloma (r/r MM), is currently enrolling (NCT05722418).
Project Term: February 28, 2021 - TBD
Who we fund
Learn more about the inspiring blood cancer scientists we support—and leading biotech companies we partner with— who are working to find cures and help blood cancer patients live longer, better lives.
Research Grants
We award grants for studies that range from basic blood cancer research to pioneering clinical trials. For more than seventy years, Blood Cancer United support has been instrumental in the development of the vast majority of breakthroughs in blood cancer treatment.
Therapy Acceleration Program ®(TAP)
TAP is a mission-driven, strategic venture philanthropy initiative that seeks to accelerate the development of innovative blood cancer therapeutics and change the standard of care while also generating a return on investment for the Blood Cancer United mission. TAP collaborates with biotech companies to support the development of novel platforms, first-in-class assets addressing high unmet medical needs, emerging patient populations, and orphan indications.