Funding from The Leukemia & Lymphoma Society (LLS) can lead to scientific breakthroughs that will improve and save the lives of patients.
The LLS Research Team oversees the organization's research stray to support cutting-edge research for every type of blood cancer, including leukemia, lymphoma, myeloma.
Take a look at the current active, extraordinary LLS-funded research projects.
337 results
Refine Your Search
Fred Hutchinson Cancer Research Center
Advances in understanding and management of AML in children has been stagnant for decades. Observed improvements in survival are more directly linked to improvements in supportive care or risk identification rather than advances in therapeutics. Excitement around FDA approval of two new IDH1/2 inhibitors did not reach the pediatric oncology community given paucity or absence of such mutations in children. This also highlights the stark differences between AML in older adults and that in younger patients. Thus, “trickle down therapeutics” where therapies that are developed in older adults are used effectively in children is a flawed concept. Discoveries and therapeutic development in younger patients must be prioritized if meaningful advances are to be made in curing AML in younger patients. Given that AML in children is not a priority for the pharmaceutical companies, alternate mechanisms for advancing therapeutics in children and young adults should be implemented.
Project Term: October 1, 2021 - September 30, 2026
Fred Hutchinson Cancer Research Center
Treatment of AML in infants is especially challenging given unique genetic make-up of the disease as well as specific susceptibilities of the host. We will leverage the RNA Seq data from over 2000 patients to discover and validate novel targets (cell surface proteins), and in collaboration with Dr. Correnti (Protein Scientist) and Dr. Fry (CART development expert) generate and test novel antibodies, ADCs, BiTEs and CARTs directed against leukemia-specific targets in infants.
Project Term: July 1, 2019 - December 31, 2022
Albert Einstein College of Medicine
We and others have shown how HLX overexpression keeps blood cells more immature by blocking their differentiation and promoting their proliferation, a characteristic which is inherent to AML. However, whether there is a causative role of HLX in the induction of AML is still unclear. Hence, the aim of my study is to better understand, using genetically engineered mice models, retroviral models, and human AML patient samples, how HLX drives AML at molecular level. This study will uncover potential therapeutic strategies for AML treatment in future.
Project Term: April 1, 2021 - March 31, 2024
New York University School of Medicine
Two newly identified structural DNA changes, termed chromothripsis and chromoplexy, result in the formation of new chromosomal structures where multiple genes can be deregulated simultaneously. These events involve the relocation of super-enhancers to the sites of oncogenes, which provides a strong drive for cancer progression, an association with high-risk status, adverse prognosis, and punctuated evolution.
Project Term: July 1, 2019 - June 30, 2022