337 results

Refine Your Search

Paul Beavis
The University of Melbourne

Chimeric antigen receptor (CAR) T cell therapy is a form of immune-based therapy where a patient’s own immune cells are genetically engineered to recognize and kill the tumor cells. This therapy has revolutionized the treatment of certain blood cancers and excitingly, two CAR T cell products were recently approved for the treatment of multiple myeloma.

Despite impressive initial clinical data showing responses in 73-98% of patients, most patients still relapse after CAR-T cell therapy within 3 years. Therefore, there is a significant unmet need to further enhance the effectiveness of CAR T cell therapy in this disease. In this project we will investigate whether an approach we have shown to make CAR T cells “fitter” and more effective in solid tumors is also effective in the context of multiple myeloma.

Project Term: July 1, 2024 - June 30, 2027

Paul Beavis
The University of Melbourne

Chimeric antigen receptor (CAR) T cell therapy is a form of immune-based therapy where a patient’s own immune cells are genetically engineered to recognize and kill the tumor cells. This therapy has revolutionized the treatment of certain blood cancers and excitingly, two CAR T cell products were recently approved for the treatment of multiple myeloma.

Despite impressive initial clinical data showing responses in 73-98% of patients, most patients still relapse after CAR-T cell therapy within 3 years. Therefore, there is a significant unmet need to further enhance the effectiveness of CAR T cell therapy in this disease. In this project we will investigate whether an approach we have shown to make CAR T cells “fitter” and more effective in solid tumors is also effective in the context of multiple myeloma.

Project Term: July 1, 2024 - June 30, 2027

Marina Konopleva
Albert Einstein College of Medicine

Myelodysplastic neoplasms are malignant disorders driven by expansion of diseased hematopoietic stem cells and progression to leukemia. Our investigations have identified the important role of the transporter of amino acid glutamine SLC38A1 in sustaining metabolic demands of rapidly growing malignant stem cells. The goal of this project is to genetically target this transporter to understand its role on tumorigenesis and progression; and to develop SLC38A1 inhibitors as novel therapeutic tools.

Project Term: October 1, 2023 - September 30, 2026

Jake Shortt
Monash University

As a lymphoma develops it expresses genes that are normally silenced to convey a survival advantage. When these genes are on the X or Y (sex chromosomes) they may present a gender-specific therapeutic target. We have identified a gene (DDX3X in females or DDX3Y in males) that is reactivated in lymphomas such that the lymphomas cannot survive if this gene is removed. This project will develop new ways to inhibit DDX3X and Y as a novel treatment for poor-risk and aggressive lymphoma.

Project Term: July 1, 2024 - June 30, 2027