Funding from Blood Cancer United can lead to scientific breakthroughs that will improve and save the lives of patients.
The Blood Cancer United Research Team oversees the organization's research strategy to support cutting-edge research for every type of blood cancer, including leukemia, lymphoma, and myeloma.
Take a look at all the currently active, extraordinary Blood Cancer United-funded research projects.
120 results
Refine Your Search

Children's Research Institute
Adoptive T cell therapies for acute myeloid leukemia face numerous hurdles such as limited target antigens, immunosuppressive tumor environment as well as the loss of efficacy due to downregulation of the targeted antigen. The goal of our project is to address some of these challenges with a single T cell product targeting multiple tumor associated antigens that have limited expression on healthy tissues via a novel combination of native T cell receptor and gene engineered CAR targeting.
Project Term: October 1, 2021 - September 30, 2024

Fondazione Centro San Raffaele
Blocking the progression of smoldering multiple myeloma (SMM) to active MM is an unmet clinical need. In primary mouse models of MM, we aim at demonstrating that modulation of the gut microbiota by vaccination against the commensal Prevotella heparinolytica and/or colonization by P. melaninogenica, also in combination with anti-PD-L1 antibodies, inhibit the progression of asymptomatic MM to full-blown disease. Our findings are expected to provide the ground for clinical trials in SMM patients.
Project Term: July 1, 2021 - June 30, 2024

Weill Cornell Medicine
Follicular lymphomas (FL) depend on stromal cells for survival and proliferation and evade T-cell immune surveillance. Although indolent, most FLs eventually undergo either progression or transformation to an aggressive lymphoma. Effective treatments to prevent this remain a critical unmet need. This proposal will develop novel, mechanism-based therapeutic regimens for FL that overcome defective immune surveillance, prevent FLs from receiving stromal support and prevent disease progression.
Project Term: October 1, 2021 - September 30, 2024
Dana-Farber Cancer Institute
Pediatric leukemia cells hijack the BCL-2 family signaling network to overexpress a range of anti-apoptotic proteins, including BFL-1 and MCL-1, and thereby enforce cellular immortality and cause treatment resistance. Here, we will harness novel and unique stapled peptides with the capacity to selectively target BFL-1, MCL-1, and importantly, both targets simultaneously, in order to reactivate the cell death pathway in MCL-1 and BFL-1 dependent pediatric leukemias.
Project Term: July 1, 2019 - June 30, 2022

University of Miami
Past studies of protein-coding regions have extensively characterized the genome of multiple myeloma (MM), but there has been little information on the prognostic impact of non-coding variants that may affect gene expression and regulation. Using a well-defined set of patient samples at different stages of disease progression we will define non-coding mutational hotspots in MM that contribute to progression and poor prognosis, identifying novel targets for alternative treatment strategies.
Project Term: July 1, 2019 - June 30, 2022

The University of Texas MD Anderson Cancer Center
We found that immune checkpoint protein B7-H3 is overexpressed in Acute Myeloid Leukemia (AML) cells compared to normal hematopoietic cells. We have developed four monoclonal antibodies (mAbs) which successfully block B7-H3 and activate NK cells to induce apoptosis in AML cells. In this proposal we propose to generate therapeutically relevant anti-B7-H3 chimeric recombinant mAbs and test their activity in vivo. In addition, we will identify the receptor for B7-H3 expressed on NK cells.
Project Term: July 1, 2019 - June 30, 2022

Regents of the University of Michigan
GATA-3 identifies high-risk subtypes of mature T-cell lymphomas (MTCL), as its target genes, which we have systematically identified, have significant cell-autonomous and non-cell-autonomous (by regulating constituents of the tumor microenvironment) roles in these MTCL. As our preliminary data suggests that XPO-1 inhibition is a novel, and largely unexplored, therapeutic strategy in these MTCL, we will examine its cell-autonomous (Aim #1) and non-cell-autonomous (Aim #2) role in GATA-3+ MTCL.
Project Term: October 1, 2021 - September 30, 2024

Emory University
We propose to develop a novel personalized immunotherapy to treat patients with refractory acute myeloid leukemia. We have shown that tumor-specific T cells (TAA-T) can diminish leukemia disease burden after allogeneic stem cell transplant. We now propose to augment the efficacy of the TAA-T products in the autologous setting using IL-15 backpacks to enhance TAA-T function and enhance efficacy without increased toxicity in vivo.
Project Term: July 1, 2018 - June 30, 2022

Weill Cornell Medicine
The project builds on evidence that mutations leading to persistent EZH2 activation drive germinal center B-cell lymphomagenesis by disrupting T-cell surveillance, and will test the hypothesis that EZH2 inhibition synergizes with immune checkpoint blockade and/or co-stimulation to eradicate these diseases. These results will provide the rationale for clinical development of precision-medicine immune-epigenetic combination therapies for lymphomas where these mechanisms are specifically altered.
Project Term: October 1, 2021 - June 30, 2024

Baylor College of Medicine
We propose to the hypothesis that patients with LCH who fail initial chemotherapy will respond to a targeted strategy of blocking MAPK signaling through MEK inhibition. This trial is a Phase 2 study to evaluate the safety and efficacy of cobimetinib in patients with refractory LCH. Exploratory aims will evaluate response of lesions with specific mutations, ability of peripheral blood mononuclear cells to determine disease burden, and development of somatic mutations in patients who relapse.
Project Term: October 1, 2021 - September 30, 2023

The University of Texas Southwestern Medical Center
LILRB1 is a human immune inhibitory receptor expressed on a variety of immune cells. Based on preliminary data, we hypothesize that blocking LILRB1 signaling in immune effector cells of myeloma patients will lead to increased anti-cancer activities of immune cells. We will identify subsets of myeloma patients with higher LILRB1 expression on immune cells, and determine whether anti-LILRB1 antagonizing antibodies can improve the function of immune cells for multiple myeloma treatment.
Project Term: July 1, 2021 - June 30, 2024

Dana-Farber Cancer Institute
B cell malignancies comprise a large number of different types of lymphomas and leukemia, which collectively represent the sixth leading cause of cancer death in the US. These cancer cells are potential targets of the host immune system’s CD4+ T cells, however, the latter normally lack the ability to kill such cancer cells. In this project, we develop a novel approach to rapidly produce CD4+ T cells capable of killing B cell cancers, and advance this approach towards clinical trials.
Project Term: July 1, 2019 - June 30, 2022
Who we fund
Learn more about the inspiring blood cancer scientists we support—and leading biotech companies we partner with— who are working to find cures and help blood cancer patients live longer, better lives.
Research Grants
We award grants for studies that range from basic blood cancer research to pioneering clinical trials. For more than seventy years, Blood Cancer United support has been instrumental in the development of the vast majority of breakthroughs in blood cancer treatment.
Therapy Acceleration Program ®(TAP)
TAP is a mission-driven, strategic venture philanthropy initiative that seeks to accelerate the development of innovative blood cancer therapeutics and change the standard of care while also generating a return on investment for the Blood Cancer United mission. TAP collaborates with biotech companies to support the development of novel platforms, first-in-class assets addressing high unmet medical needs, emerging patient populations, and orphan indications.