88 results

Refine Your Search

Soheil Meshinchi
Fred Hutchinson Cancer Research Center

Treatment of AML in infants is especially challenging given unique genetic make-up of the disease as well as specific susceptibilities of the host. We will leverage the RNA Seq data from over 2000 patients to discover and validate novel targets (cell surface proteins), and in collaboration with Dr. Correnti (Protein Scientist) and Dr. Fry (CART development expert) generate and test novel antibodies, ADCs, BiTEs and CARTs directed against leukemia-specific targets in infants.

Project Term: July 1, 2019 - December 31, 2022

Gareth Morgan
New York University School of Medicine

Two newly identified structural DNA changes, termed chromothripsis and chromoplexy, result in the formation of new chromosomal structures where multiple genes can be deregulated simultaneously. These events involve the relocation of super-enhancers to the sites of oncogenes, which provides a strong drive for cancer progression, an association with high-risk status, adverse prognosis, and punctuated evolution.

Project Term: July 1, 2019 - June 30, 2022

Bruno Paiva
Universidad de Navarra

Multiple myeloma remains largely incurable and there is consensus that the pathway to cure cancer involves treating patients earlier. Thus, there is an unmet need to develop methods for early detection of pre-malignant disease and to help tailoring treatment for patients with smoldering myeloma. We aim to develop new methods for minimally invasive characterization of patients with smoldering myeloma in order to treat disease causation instead of symptomatology and increase curability rates.

Project Term: October 1, 2021 - September 30, 2024

Michael Keller
Children's Research Institute

SARS-Cov-2 infections may be prolonged in cancer patients and may enable intrahost development of virulent viral variants. Adoptive immunotherapy with virus-specific T-cells has been an effective treatment for refractory viral infections in immunocompromised patients following HSCT. We propose to study the functionality of coronavirus-specific T-cells (CSTs) from healthy donors, and utilize CSTs as preventative therapy for patients undergoing bone marrow transplant in a phase I study.

Project Term: July 1, 2021 - June 30, 2024

Lev Kats
The University of Melbourne

We have identified the multi-domain protein DCAF1 as a genetic dependency in multiple myeloma and developed a series of potent on-target DCAF1 inhibitors that have a unique mode of action compared with existing therapies. In this proposal we will continue the detailed molecular characterization of our lead compound Vpr8. In parallel, using Vpr8 as the scaffold, we will develop a new series of PROTAC drugs that engage the ubiquitin ligase activity of DCAF1-containing E3 complexes.

Project Term: October 1, 2021 - September 30, 2024

Piers Patten
King's College London

Through phenotypic and functional studies of immune cells, proteomic mapping of immune responses and genomic studies of variant strains, this project will assess the evolution of natural SARS-CoV-2 infection and COVID-19 vaccine responses in hemato-oncology patients. Integration of immunological profiles and genomic outcomes with clinical characteristics will inform future best patient management, especially for those patients at risk of prolonged infection with long term viral shedding.

Project Term: September 1, 2021 - August 31, 2024

Gianpietro Dotti
The University of North Carolina at Chapel Hill

We developed a chimeric antigen receptor (CAR) targeting an epitope of the myeloid associated antigen cathepsin G that is processed and presented in the contest of the MHC complex in myeloid leukemic cells. T cells expressing the cathepsin G specific CAR (CG1.CAR) recognize HLA-A2+ myeloid target cells expressing cathepsin G. We intend to study efficacy and safety of CG1.CAR-T cells in preclinical models in preparation of a phase I clinical study in patients with relapsed/refractory AML.

Project Term: July 1, 2021 - June 30, 2024

Alexey Danilov
Beckman Research Institute of the City of Hope

Nearly half of patients with diffuse large B-cell lymphoma (DLBCL), ultimately fail current therapies and die from their disease. Selective targeting of cyclin-dependent kinase 9 (CDK9) is a promising strategy, as evidenced by potent anti-tumor effects in preclinical models of DLBCL. Yet tumors evade therapy by developing resistance. This proposal seeks to both elucidate and circumvent the oncogenic events underlying this resistance in order to offer novel therapeutic approaches to treat DLBCL.

Project Term: October 1, 2021 - September 30, 2023

Brian Dalton
Johns Hopkins University

Mutations in the spliceosome gene SF3B1 are common in myeloid malignancies, but they are currently untargetable. Our previous work has shown that SF3B1 mutations reprogram energy metabolism and create vulnerability to restriction of the nonessential amino acid serine. Here we propose a preclinical project studying PEGylated cystathioinine beta synthase (pCBS), a recombinant enzyme that catabolizes serine, as a treatment for SF3B1-mutant myeloid malignancies.

Project Term: October 1, 2021 - September 30, 2024

Tomasz Skorski
Temple University

Myeloproliferative neoplasms (MPNs) carry JAK2(V617F), MPL(W515L) and mutations in calreticulin (CALRmut) often accompanied by mutations in TET2, ASXL1, DNMT3A, EZH2, and other genes. We will develop a strategy based on gene mutation profiling to identify MPNs displaying specific defects in DNA repair. These defects will be then explored by specific DNA repair inhibitors to eliminate quiescent and proliferating MPN stem and progenitor cells without affecting normal cells and tissues.

Project Term: July 1, 2021 - June 30, 2024

Srividya Swaminathan
Beckman Research Institute of the City of Hope

Refractory pediatric B- and T- lymphoid cancers exhibit hyperactivation of MYC and its downstream pathways. Experimentally, MYC inactivation sustains tumor regression. However, MYC’s requirement in normal B/T-cells has hampered the development of MYC inhibitors. Recently, we showed that MYC-High B/T-Lymphoid Neoplasms (B/T-MLN) evade Natural Killer (NK) cell surveillance. Hence, we propose to develop targeted off-the-shelf NK therapies as an alternative to MYC inhibition for treating B/T-MLN.

Project Term: July 1, 2021 - June 30, 2024

Ashwin Unnikrishnan
The University of New South Wales (UNSW)

This proposal aims to understand the molecular mechanisms underlying response to AZA therapy in MDS, as a basis for developing more effective therapies. A ribonucleotide, AZA’s effects on RNA remain unknown. Here, we will investigate the impact of in vivo AZA therapy on RNA alternative splicing and DNA demethylation in MDS patients. Secondly, we will investigate whether AZA treatment exposes neoepitopes in the dysplastic cells of patients, which could be exploited for cancer immunotherapy in MDS

Project Term: July 1, 2019 - June 30, 2022