437 results

Refine Your Search

Ravindra Majeti
Board of Trustees of the Leland Stanford Junior University

Chronic myelomonocytic leukemia (CMML) is a rare but poorly understood blood cancer often presenting with crippling inflammatory symptoms that frequently evolves into acute leukemia. In an ongoing clinical trial, we have compelling molecular and clinical data that this disease responds effectively to blockade of GM-CSF with lenzulimab, a well-tolerated and safe antibody, in combination with azacitidine. Here, we propose an integrated research program to investigate targeting of the GM-CSF pathway in high risk CMML using our carefully matched patient samples, proprietary GM-CSF tools, and humanized in vivo CMML models.

Project Term: November 1, 2023 - October 31, 2028

Peter Croucher
Garvan Institute of Medical Research

Multiple myeloma causes devastating bone disease characterised by focal bone lesions and generalise bone loss, which leads to an increase in bone fractures. Current therapies only stop bones from getting worse so patients continue to suffer fractures. We discovered that inhibiting a molecule called sclerostin in mice increases bone and is much better than current treatments. In this program we will investigate whether inhibiting sclerostin is able to restore lost bone and reduce fractures in patients with myeloma.

Project Term: July 1, 2024 - June 30, 2027

James Rubenstein
University of California, San Francisco

This project will significantly advance the treatment and prevention of CNS lymphomas in two key areas. One, we will further develop and validate candidate genomic biomarkers that identify high risk disease and that are useful in risk stratification in future clinical investigations in primary CNS lymphoma. Two, we will evaluate novel pharmacologic interventions that we hypothesize will: a) potentiate both the anti-lymphoma immune response, including agonists of the toll like receptor 7 and 8 pathway, as well as the combination of the anti-CD19 monoclonal antibody tafasitamab plus lenalidomide; and b) antagonize the NFkB pathway, via the orally-administered BTK degrader, Nx-5948, that we have demonstrated to be active in preclinical models using patient-derived CNS lymphomas.

Project Term: July 1, 2024 - June 30, 2027

Bingyi Chen
Memorial Sloan Kettering Cancer Center

A major limitation of immunotherapy approaches for AML has been the lack of known targetable cell surface antigens specific to AML cells. This project characterizes the pathologic and biologic effects of a novel cell surface antigen complex uniquely present on AML cells but not normal hematopoietic precursors, known as the U5 snRNP complex. Furthermore, we will interrogates U5 snRNP complex components as novel AML-associated antigens and CAR T cells targets for AML treatment.

Project Term: July 1, 2024 - June 30, 2027

Nataly Cruz-Rodriguez
Versiti Blood Center of Wisconsin

p>SIRT5 is a master regulator of central energy metabolism. The survival and growth of Acute Myeloid Leukemia (AML) cells depend on SIRT5. I will employ genetic SIRT5 disruption and small molecule inhibitors to target SIRT5 in Acute Lymphoblastic Leukemia (ALL) cells and primary samples. This study aims to 1) determine the effects of SIRT5 inhibition on ALL in vitro and in vivo, and 2) identify SIRT5-regulated pathways and mechanisms underlying SIRT5 dependency in T-ALL. 

Project Term: July 1, 2024 - June 30, 2026

Bailee Kain
Cincinnati Children's Hospital

AML risk stratification established by previous studies do not reflect survival outcomes observed in Black patients. Exome sequencing of 100 Black AML patients revealed the novel variants previously not affiliated with AML, including PHIP. Using multiomic patient sample captures and GEMMs, we will functionalize variants in PHIP and assess if they drive leukemogenesis and/or therapy resistance. The overall goal of this work is to implement inclusive genetic assessment tools for AML diagnosis.

Project Term: July 1, 2024 - June 30, 2027

Faron Pharmaceuticals
TAP Partner

In June 2022, LLS made an equity investment in Faron Pharmaceuticals to "Support Clinical Development of the Bexmarilimab Program for Leukemia Indications."Faron is a clinical stage biopharmaceutical company developing novel treatments for medical conditions with significant unmet needs caused by dysfunction of our immune system. The Company currently has a pipeline based on the receptors involved in regulation of immune response in oncology, organ damage and bone marrow regeneration. Bexmarilimab, a novel anti-Clever-1 humanized antibody, is its investigative precision immunotherapy with the potential to provide permanent immune stimulation for difficult-to-treat cancers through targeting myeloid function. A Phase 2 study (BEXMAB) of bexmarilimab in combination with azacitidine is currently enrolling high-risk MDS patients in the US and Finland (NCT05428969).

Project Term: June 30, 2022 - TBD

Immune-Onc Therapeutics
TAP Partner

In March 2021, LLS made an equity investment in Immune-Onc Therapeutics to support the "Phase 1 Clinical Development of IO-202, An Antibody Targeting LILRB4, for the Treatment of AML with Monocytic Differentiation and CMML."Immune-Onc is a private, clinical-stage cancer immunotherapy company dedicated to the discovery and development of novel myeloid checkpoint inhibitors for cancer patients. The company aims to translate unique scientific insights in myeloid cell biology and immune inhibitory receptors to discover and develop first-in-class biotherapeutics that reverse immune suppression in the tumor microenvironment. Immune-Onc has a differentiated pipeline with a current focus on targeting the Leukocyte Immunoglobulin-Like Receptor subfamily B (LILRB) of myeloid checkpoints. The company’s work builds on early research by Chengcheng (Alec) Zhang, Ph.D. at the University of Texas Southwestern Medical Center that was also funded by LLS grants.IO-202 is a first-in-class antibody targeting the LILRB4 and has entered a phase 1 cohort expansion clinical trial (NCT0437243) for the treatment of AML (IO-202 in combination with azacitidine) and CMML (IO-202 in combination with azacitidine). 

Project Term: March 5, 2021 - TBD

George Vassiliou
University of Cambridge

Tmdshe majority of myeloid cancers remain incurable. We previously showed that individuals at risk can be identified years in advance, indicating that prevention may be a viable alternative to treatment. Here, we propose a program of work to establish a clinical platform for myeloid cancer prevention. This includes development of a screening strategy, improved understanding of myeloid cancer evolution, identification of treatment targets and establishment of a specialized clinic to deliver therapy.

Project Term: February 1, 2024 - January 29, 2029

Paul Beavis
The University of Melbourne

Chimeric antigen receptor (CAR) T cell therapy is a form of immune-based therapy where a patient’s own immune cells are genetically engineered to recognize and kill the tumor cells. This therapy has revolutionized the treatment of certain blood cancers and excitingly, two CAR T cell products were recently approved for the treatment of multiple myeloma. Despite impressive initial clinical data showing responses in 73-98% of patients, most patients still relapse after CAR-T cell therapy within 3 years. Therefore, there is a significant unmet need to further enhance the effectiveness of CAR T cell therapy in this disease. In this project we will investigate whether an approach we have shown to make CAR T cells “fitter” and more effective in solid tumors is also effective in the context of multiple myeloma.

Project Term: July 1, 2024 - June 30, 2027

Paul Beavis
The University of Melbourne

Chimeric antigen receptor (CAR) T cell therapy is a form of immune-based therapy where a patient’s own immune cells are genetically engineered to recognize and kill the tumor cells. This therapy has revolutionized the treatment of certain blood cancers and excitingly, two CAR T cell products were recently approved for the treatment of multiple myeloma.Despite impressive initial clinical data showing responses in 73-98% of patients, most patients still relapse after CAR-T cell therapy within 3 years. Therefore, there is a significant unmet need to further enhance the effectiveness of CAR T cell therapy in this disease. In this project we will investigate whether an approach we have shown to make CAR T cells “fitter” and more effective in solid tumors is also effective in the context of multiple myeloma.

Project Term: July 1, 2024 - June 30, 2027

Paul Beavis
The University of Melbourne

Chimeric antigen receptor (CAR) T cell therapy is a form of immune-based therapy where a patient’s own immune cells are genetically engineered to recognize and kill the tumor cells. This therapy has revolutionized the treatment of certain blood cancers and excitingly, two CAR T cell products were recently approved for the treatment of multiple myeloma.Despite impressive initial clinical data showing responses in 73-98% of patients, most patients still relapse after CAR-T cell therapy within 3 years. Therefore, there is a significant unmet need to further enhance the effectiveness of CAR T cell therapy in this disease. In this project we will investigate whether an approach we have shown to make CAR T cells “fitter” and more effective in solid tumors is also effective in the context of multiple myeloma.

Project Term: July 1, 2024 - June 30, 2027