Funding from Blood Cancer United can lead to scientific breakthroughs that will improve and save the lives of patients.
The Blood Cancer United Research Team oversees the organization's research strategy to support cutting-edge research for every type of blood cancer, including leukemia, lymphoma, and myeloma.
Take a look at all the currently active, extraordinary Blood Cancer United-funded research projects.
437 results
Refine Your Search

Fox Chase Cancer Center
My lab is focused on the immune regulatory mechanisms and ubiquitin-dependent machinery in lymphoma. We have established multiple high-throughput screening technologies and animal models to rapidly and accurately identify critical pathways that are suitable for targeted therapy and immunotherapy. Gaining insight into the pathological roles of these pathways can lead to improved understandings of the molecular circuitry that drives lymphoma pathogenesis and provide novel therapeutic strategies.
Project Term: July 1, 2022 - June 30, 2027

Oregon Health & Science University
Our research program is focused on understanding the intersection between signaling and transcriptional dysfunction in myeloid leukemias. We leverage murine models, cell lines and human samples to uncover how biological context shapes the manifestation of oncogenic programs at the molecular level. Our long-term goal is to harness this knowledge to identify multipronged therapeutic strategies that improve outcomes for patients with myeloid malignancies.
Project Term: July 1, 2022 - June 30, 2027

Dana-Farber Cancer Institute
Our central goal is to improve clinical outcomes in patients with myeloid malignancies through developing an enhanced mechanistic understanding of disease. We use multiomic analyses of primary patient samples combined with complementary laboratory models using mice and cell lines to generate and test our hypotheses. The results of our studies will help improve patient outcomes by identifying strategies to mitigate risk of disease progression/relapse and treatment toxicity.
Project Term: July 1, 2022 - June 30, 2027

Perelman School of Medicine at the University of Pennsylvania
The goal of this proposal is to investigate the significance of genes of the ubiquitin proteasome system (UPS) that are mutated in Diffuse Large B-cell Lymphoma (DLBCL). Our studies leverage the expertise in the molecular modeling of the UPS in the pathogenesis of DLBCL utilizing mouse models, patient derived xenotransplant (PDX) and cell lines. Our goal is the understanding of how genetic mutations contribute to disease development, progression and therapeutic outcome.
Project Term: July 1, 2022 - June 30, 2027

The University of Texas MD Anderson Cancer Center
The overarching focus of my research is to understand the clonal origin, evolution, and progression of myeloid malignancies and biological and clinical factors that influence the process. We tackle this question by analyzing patient samples with integrated approach combining single-cell omics, evolutionary genetics, and computational analytics. The ultimate goal of our research is to develop clinical strategies for early detection, prevention, and treatments of myeloid malignancies.
Project Term: July 1, 2022 - June 30, 2027

Duke University
My research aims to improve the patient and caregiver experience of blood cancer care. To achieve this, I conduct trials of integrated palliative care interventions. Palliative care improves patient and caregiver outcomes for those with solid tumors, but less is known about its role in hematology. My research aims to design and implement integrated palliative care interventions in blood cancer settings, to improve the patient and caregiver experience of illness, regardless of treatment outcome.
Project Term: July 1, 2022 - June 30, 2027

Beckman Research Institute of the City of Hope
We believe that regimens without chemotherapy can induce significant and durable remissions in patients with Mantle cell lymphoma (MCL). We will confirm this hypothesis by conducting two clinical trials stratified by the presence or absence of high risk features. We will utilize BH3 profiling and MRD testing to assist with predicting treatment response and remission. Our goal is to verify the efficacy of our regimen and prove the utility of BH3 profiling and MRD testing in outcome prediction.
Project Term: July 1, 2022 - September 30, 2027
Washington University School of Medicine in St. Louis
We are evaluating if adding duvelisib or azacitidine to standard chemotherapy increases the complete remission rate compared to chemotherapy alone in peripheral T-cell lymphoma. We believe that adding novel agents to chemotherapy will most benefit lymphomas with a T-follicular helper phenotype. We will also study if tests for lymphoma cells in the blood can predict outcomes. We hope these novel therapies will cure more patients and we can identify who is most likely to benefit from them.
Project Term: July 1, 2022 - June 30, 2027

Medical College of Wisconsin
The objective of this proposal is to improve bispecific anti-CD20/anti-CD19 CAR T-cell activity and persistence by understanding impact of cell manufacturing parameters on final engineered CAR-T product and determining resistance mechanisms in relapsing patients. We will analyze patient apheresis, final CAR-T product, and peripheral blood samples from subjects enrolled on an ongoing clinical trial (NCT04186520). Data from these studies will advance CAR T-cell therapies for lymphoma patients.
Project Term: July 1, 2022 - June 30, 2027

The University of Texas MD Anderson Cancer Center
Targeted therapies have replaced chemoimmunotherapy in chronic lymphocytic leukemia (CLL). We previously reported that combined BTK inhibitor (ibrutinib) and BCL2 antagonist (venetoclax) is highly synergistic. In this proposal, we will conduct a phase II trial of combined non-covalent BTK inhibitor (pirtobrutinib) with venetoclax and obinutuzumab in patients with untreated CLL with primary endpoint of marrow MRD. We will perform BH3 profiling and scRNAseq and correlate with clinical outcomes.
Project Term: July 1, 2022 - June 30, 2027

University of Iceland
We build on the success from the Iceland Screens, Treats, or Prevents Multiple Myeloma (iStopMM) study, where over 80,000 consented to a nationwide screening for MM precursors. A unique cohort of patients with SMM diagnosed in iStopMM will be followed by clinical evaluation, linking to central health data registries, using novel biomarkers, and in-depth genetics. With precision early treatment we aim to induce a paradigm shift leading to improved quality of life and potentially a cure for MM.
Project Term: July 1, 2022 - June 30, 2027
The University of Chicago
T-ALL is an aggressive leukemia with limited treatment options. T-ALL cells resist to dying by suppressing their suicide pathways. BH3 mimetics reactivate the suicide mechanisms to induce cell death. We showed that these drugs are effective in T-ALL, but acquired resistance is due to the activation of growth-promoting signaling pathways. The proposed experiments will decipher the relationship between growth and death pathways, identifying unique combination therapies to improve disease outcomes.
Project Term: July 1, 2022 - June 30, 2025
Who we fund
Learn more about the inspiring blood cancer scientists we support—and leading biotech companies we partner with— who are working to find cures and help blood cancer patients live longer, better lives.
Research Grants
We award grants for studies that range from basic blood cancer research to pioneering clinical trials. For more than seventy years, Blood Cancer United support has been instrumental in the development of the vast majority of breakthroughs in blood cancer treatment.
Therapy Acceleration Program ®(TAP)
TAP is a mission-driven, strategic venture philanthropy initiative that seeks to accelerate the development of innovative blood cancer therapeutics and change the standard of care while also generating a return on investment for the Blood Cancer United mission. TAP collaborates with biotech companies to support the development of novel platforms, first-in-class assets addressing high unmet medical needs, emerging patient populations, and orphan indications.