Funding from Blood Cancer United can lead to scientific breakthroughs that will improve and save the lives of patients.
The Blood Cancer United Research Team oversees the organization's research strategy to support cutting-edge research for every type of blood cancer, including leukemia, lymphoma, and myeloma.
Take a look at all the currently active, extraordinary Blood Cancer United-funded research projects.
413 results
Refine Your Search

Stanford University
Niclosamide is an FDA approved anti-parasitic drug that is well tolerated and acts synergistically with chemotherapy to kill AML cells. We will conduct a Phase I clinical trial with niclosamide in combination with cytarabine for children with relapsed/refractory pediatric AML. ShRNA/CRISPR screens demonstrated that Bcl-2 is upregulated in niclosamide resistant cells. We will study the effects of the Bcl-2 inhibitor venetoclax in combination with niclosamide in pediatric AML.
Project Term: June 30, 2022 - June 30, 2025

The Johns Hopkins University School of Medicine
Few treatment options are available for T cell leukemias and lymphomas, collectively called T cell cancers that affect ~100,000 patients worldwide each year. The current proposal will generate new antibodies attached to drugs and toxins that kill the T cell cancers. Importantly, the antibodies will preserve enough healthy T cells to maintain a functioning immune system. These modified antibodies may improve patient outcome and limit side effects associated with traditional chemotherapies.
Project Term: July 1, 2022 - June 30, 2025

Stanford University
The focus of this research project is to understand how therapeutic chimeric antigen receptor (CAR) T-cells mediate long-term remission of diffuse large B-cell lymphomas. I will use cell free DNA collected from patient plasma to understand if there is an association of CAR T-cell persistence and long-term tumor remission. The goal of this research is to define how CAR T-cells suppress tumors over time to develop better CAR T-cells in the future.
Project Term: July 1, 2022 - TBD

Cincinnati Children’s Hospital Medical Center
The mitogen-activated protein kinase (MAPK) pathway is activated in high-risk leukemia and is a hallmark of resistance to therapies. This project uses patient-derived xenograft models of relapsed pediatric ALL and AML with activated RAS/MAPK to test whether clinically relevant MAPK mutations activate the VAV3/RAC pathway and if pharmacological inhibition of that pathway by a small molecule we developed synergizes with a MAPK-inhibitor to provide a new treatment strategy for RAS-driven leukemia.
Project Term: July 1, 2022 - June 30, 2025

Yale University
The B-cell kinase SYK and its T-cell homolog ZAP70 have almost identical functions but are strictly segregated to B- and T-cells. We recently discovered that B-cell malignancies frequently coexpress ZAP70 and that only SYK but not ZAP70 can trigger negative B-cell selection and cell death. Here we test the hypothesis that ZAP70 enables malignant B-cell transformation, test pharmacological SYK-hyperactivation and validate ZAP70 as biomarker of patients who benefit from this approach.
Project Term: July 1, 2022 - June 30, 2025

The University of Texas MD Anderson Cancer Center
SIRPα+ macrophages mediate resistance to lenalidomide in B-cell lymphoma, limiting the activity of immunotherapy for these patients. Therefore, we propose a phase I/II study, investigating the safety and efficacy of ALX148, a novel fusion protein of the SIRPα binding domain, in combination with rituximab and lenalidomide in patients with B-cell lymphoma. We hypothesize that this combination will be safe and effective, providing a chemotherapy-free option for these patients.
Project Term: July 1, 2022 - June 30, 2027

Van Andel Research Institute
Leukemia often results from aberrant gene expression caused by epigenetic alterations. Previously we discovered a novel histone acetylation reader domain in the ENL protein and demonstrated that this domain is essential for the survival of a wide range of acute leukemias, making it an attractive therapeutic target. We will develop specific inhibitors of ENL activity in acute leukemias and will use mouse models to define the role of ENL mutations identified in patients in leukemogenesis.
Project Term: July 1, 2022 - June 30, 2027

Rutgers University
Our research program aims to gain a deeper understanding of the pathobiology of T-ALL and HSTL.To this end, we will use novel mouse models, cutting-edge techniques and comprehensive genetic, pharmacological and metabolic interventions. In addition, we will perform unbiased experiments to identify novel therapeutic targets.Our goal is to uncover new tools and targets for the treatment of T-ALL and HSTL, which could be used for the benefit of patients in the short/mid-term.
Project Term: July 1, 2022 - June 30, 2027

The University of Chicago
The long-term goal of my research program is to improve the outcomes for patients with high-risk myeloid blood cancers, particularly those with loss of chromosome 7 or CUX1. We are tackling this question using an arsenal of innovative methods and tools, including mouse models, human cells and patient samples, and state-of-the-art technologies to examine the cancer cell genome. Accomplishing this work will reveal new treatments and strategies for preventing blood cancers from arising.
Project Term: July 1, 2022 - June 30, 2027

Fox Chase Cancer Center
My lab is focused on the immune regulatory mechanisms and ubiquitin-dependent machinery in lymphoma. We have established multiple high-throughput screening technologies and animal models to rapidly and accurately identify critical pathways that are suitable for targeted therapy and immunotherapy. Gaining insight into the pathological roles of these pathways can lead to improved understandings of the molecular circuitry that drives lymphoma pathogenesis and provide novel therapeutic strategies.
Project Term: July 1, 2022 - June 30, 2027

Oregon Health & Science University
Our research program is focused on understanding the intersection between signaling and transcriptional dysfunction in myeloid leukemias. We leverage murine models, cell lines and human samples to uncover how biological context shapes the manifestation of oncogenic programs at the molecular level. Our long-term goal is to harness this knowledge to identify multipronged therapeutic strategies that improve outcomes for patients with myeloid malignancies.
Project Term: July 1, 2022 - June 30, 2027

Dana-Farber Cancer Institute
Our central goal is to improve clinical outcomes in patients with myeloid malignancies through developing an enhanced mechanistic understanding of disease. We use multiomic analyses of primary patient samples combined with complementary laboratory models using mice and cell lines to generate and test our hypotheses. The results of our studies will help improve patient outcomes by identifying strategies to mitigate risk of disease progression/relapse and treatment toxicity.
Project Term: July 1, 2022 - June 30, 2027
Who We Fund
Learn more about the inspiring blood cancer scientists we support—and leading biotech companies we partner with— who are working to find cures and help blood cancer patients live longer, better lives.
Research Grants
We award grants for studies that range from basic blood cancer research to pioneering clinical trials. For more than seventy years, Blood Cancer United support has been instrumental in the development of the vast majority of breakthroughs in blood cancer treatment.
Therapy Acceleration Program ®(TAP)
TAP is a mission-driven, strategic venture philanthropy initiative that seeks to accelerate the development of innovative blood cancer therapeutics and change the standard of care while also generating a return on investment for the Blood Cancer United mission. TAP collaborates with biotech companies to support the development of novel platforms, first-in-class assets addressing high unmet medical needs, emerging patient populations, and orphan indications.