246 results

Refine Your Search

Grzegorz Nowakowski
Mayo Clinic, Rochester

Mayo Clinic Rochester (MCR) is a tertiary center with 35,000 blood cancer visits annually. Circa 70% of patients referred to MCR come from 5 states: MN, WI, IA, SD and ND inhabited by 10,483,946 people living primarily in a rural setting. To improve local care access, MCR has developed the Mayo Clinic Health System (MCHS), a network of 17 community sites of which 7 have oncology care. In 2018, the MCR joined with the University of Minnesota to establish the Minnesota Cancer Clinical Trials Network (MCCTN) that includes 18 sites. These 2 networks encompass large areas of rural, economically disadvantaged populations and unrepresented minorities, including Native Americans, Latinos and African Americans. The MCR is actively supporting clinical research at MCHN sites, including access to clinical trials (CTs) portfolio. Oncology CTs are open in some of MCHS sites but of the 25 currently open, only 2 CTs target blood cancers. The University of Iowa/Mayo Clinic Lymphoma SPORE has opened epidemiological trials in the MCHS. The MCCTN is new and none of the 3 open CTs are hematologic. Lymphoma study accruals from the MCHS include 42 patients (1 therapeutic; 41 lymphoma epidemiology). The robust epidemiology trial accrual demonstrates that these new lymphoma patients are being seen at these sites and are willing to consent. While many patients from rural communities are seen at MCR for initial diagnosis, these patients often are unable to enroll into trials due to distance from MCR. Feedback from providers from both Networks identified barriers to accrual to lymphoma CTs: i) lack of local lymphoma trials; ii) competition with the more common solid tumor CTs for scarce resources; iii) very busy clinical practices that limits dedicated time for enrollment of intensive complex hematology patients. The practice pressure particularly affects patients requiring language or financial assistance. In this proposal, we outline our plans to address the 3 barriers identified.

Project Term: April 1, 2021 - March 31, 2026

Michael Keller
Children's Research Institute

SARS-Cov-2 infections may be prolonged in cancer patients and may enable intrahost development of virulent viral variants. Adoptive immunotherapy with virus-specific T-cells has been an effective treatment for refractory viral infections in immunocompromised patients following HSCT. We propose to study the functionality of coronavirus-specific T-cells (CSTs) from healthy donors, and utilize CSTs as preventative therapy for patients undergoing bone marrow transplant in a phase I study.

Project Term: July 1, 2021 - June 30, 2024

Craig Jordan
University of Colorado Denver, Anschutz Medical Campus

Our SCOR team seeks to fundamentally reinvent the ways in which physicians diagnose and treat acute myeloid leukemia (AML). For over 40 years, AML has been treated with a combination of chemotherapy drugs that have major side effects and usually only provide short-term benefit to patients. Indeed, survival rates for most AML patients are dismal, and quality of life for these patients is poor. Consequently, improved strategies for AML are a huge priority for the field. We believe that the lack of progress against AML is due to a single, fundamental failure of existing therapies: While current therapies attack leukemia cells, they fail to act against the real root of the problem, namely leukemia stem cells. It’s like mowing over weeds in a lawn. If the roots are not removed, the weed (disease) will grow back. And like eradicating the roots of weeds, AML stem cells have proved difficult to treat. This is primarily due to the fact that AML stem cells within a given patient can exist in multiple forms, each of which has a differing response to therapy. In other words, while various drugs can often kill some AML stem cells in a patient, completely eradicating all the AML stem cells can be very difficult.

Project Term: October 1, 2018 - September 30, 2023

Caron Jacobson
Dana-Farber Cancer Institute

CAR T-cells are highly effective in lymphoma but limited by a profound and potentially fatal toxicity involving the central nervous system (CNS). Little is known about how CAR T-cells eliminate lymphoma cells in the CNS nor how this therapy causes toxicity. I will study CAR T-cells in patients with CNS lymphomas with the goal of expanding CAR T-cell indications. I will also examine serial blood and CNS samples to understand neurologic toxicity to inform new therapies to control this toxicity.

Project Term: October 1, 2021 - September 30, 2026

Rizwan Romee
Dana-Farber Cancer Institute

Coming soon.

Project Term: July 1, 2021 - June 30, 2026

Michael Savona
Vanderbilt University Medical Center

Vanderbilt-Ingram Cancer Center (VICC) is the only NCI designated cancer center that serves both adult and pediatric populations in TN, one of the highest cancer-mortality states in the country. In fact, TN rural dwellers encompass about 30-50% of the states’ population, many with lower per-capita income and high school graduation rates. Influencing cancer care by facilitating underserved and minority populations to access therapeutic clinical trials as well as those focused on screening and prevention strategies remains a cornerstone objective. The Vanderbilt Health Affiliated Network (VHAN) serves as the largest provider for an organized network of hospitals, clinics, and health systems across TN. This network encompasses 12 health systems and 61 hospitals. Within VHAN, the VICC has had a formal affiliation with Baptist Memorial Healthcare Corporation (BMHCC) since 2012. BMHCC is affiliated with 22 hospitals and provides care for 8000 new cancer patients (pts) annually covering 111 counties totaling 4.3 million people. This includes 44% of the 252 counties and parishes in the Delta Regional Authority, congressionally acknowledged as the most indigent population in the US. The primary objective of the VICC community center affiliation with BMHCC is to enhance the regional level of cancer care and to advance cancer research efforts. VICC has provided guidance on a regular basis to assist BMHCC in the establishment and implementation of the Minority and Underserved National Cancer Institute Community Oncology Research Program (NCORP) grant as a successful and sustainable program. BMHCC has become amongst the top recruitment sites for NCORP, with steady growth in the proportion of rural pts seen across the health system. VICC continues to be a resource for BMHCC on providing consultations, training, and best practices for specialized services such as clinical research, radiation oncology, cancer screening, stem cell transplantation and community engagement.

Project Term: April 1, 2021 - March 31, 2026

Marc Seifert
Institute of Cell Biology (Tumor Research) at the Medical school Essen

We have long standing experience in the field of HCL research. The aim of this research proposal is to characterize HCL on single cell level across multiple layers to uncover interactions of HCL with its microenvironment, which supports HCL cell survival. We will further explore metabolic and functional dependencies of primary HCL cells, and we hypothesize that their attenuation compromises HCL cell survival. Finally, we aim to pharmacologically disrupt these pro-survival pathways in HCL cells.

Project Term: October 1, 2021 - September 30, 2024

Courtney DiNardo
MD Anderson Cancer Center

My ultimate goal is to develop more effective, better tolerated, and individualized treatment for patients with AML. This project focuses on AML patients with IDH1 or IDH2 mutations, with a clinical trial evaluating a combination of three agents which are effective in IDH-mutated AML. While these therapies are not curative on their own, my hope is that this combination will lead to a practice changing all-oral, outpatient, and well-tolerated curative strategy for patients with IDH-mutated AML.

Project Term: October 1, 2021 - September 30, 2026

Madhav Dhodapkar
Emory University

Dr. Madhav Dhodapkar, M.D., of Winship Cancer Institute of Emory University, Atlanta, leads a multi-institutional, multi-disciplinary LLS Specialized Center of Research team focused on advancing new immunotherapies for patients with multiple myeloma. Their goal is to improve the effectiveness of CAR T-cell immunotherapy, which engineers the patient’s T cells to find and kill cancer cells. The CAR-T they are studying targets a protein called BCMA found on the surface of all myeloma cells. BCMA-targeting therapies are showing tremendous promise for treating myeloma patients in clinical trials, but many patients eventually relapse. Dr. Dhodapkar’s group is working to understand the mechanisms that cause some patients to be resistant to the treatment. They are also investigating another type of immunotherapy that relies on natural killer T cells. His team includes researchers at Emory as well as Fred Hutchinson Cancer Center in Seattle.

Project Term: January 1, 2020 - December 31, 2024

Jaehyuk Choi
Northwestern University

Coming soon.

Project Term: July 1, 2021 - June 30, 2026

Tomasz Skorski
Temple University

Myeloproliferative neoplasms (MPNs) carry JAK2(V617F), MPL(W515L) and mutations in calreticulin (CALRmut) often accompanied by mutations in TET2, ASXL1, DNMT3A, EZH2, and other genes. We will develop a strategy based on gene mutation profiling to identify MPNs displaying specific defects in DNA repair. These defects will be then explored by specific DNA repair inhibitors to eliminate quiescent and proliferating MPN stem and progenitor cells without affecting normal cells and tissues.

Project Term: July 1, 2021 - June 30, 2024

Sarah Tasian
The Children's Hospital of Philadelphia

Dr Tasian’s scientific passion is successful development of precision medicine therapies for high-risk childhood leukemia. Her translational laboratory research program focuses upon investigation of kinase inhibitors and chimeric antigen receptor (CAR) T cell immunotherapies in childhood ALL and AML using primary patient specimens and patient-derived xenograft models. Through her laboratory and clinical research, she aspires to improve cure rates and minimize toxicities for children with leukemia.

Project Term: October 1, 2021 - September 30, 2026