138 results

Refine Your Search

Christina Glytsou
New York University School of Medicine

Although new targeted therapies have been discovered and approved for the treatment of various types of leukemia, in many cases patients do not respond or develop resistance to treatments. My LLS-funded studies shed light on the mitochondria adaptations which enable cancer cells escape cell death induced by the treatments, while suggesting novel therapeutic strategies.

Project Term: July 1, 2021 - June 30, 2023

Mitchell Geer
New York University School of Medicine

Current therapies for cancers driven by “RAS/ERK’ pathway mutations, such as juvenile myelomonocytic leukemia (JMML), are either high risk (bone marrow transplant) or ineffective (targeted inhibitors). We have identified a unique dependency of JMML cell growth for a group of ERK targets, which are not required for normal blood cell growth. We are investigating this further and aim to identify the ERK targets responsible, which may provide new drug targets to treat JMML and other cancers.

Project Term: July 1, 2019 - June 30, 2022

Alfred Garfall
Perelman School of Medicine at the University of Pennsylvania

My overall focus is to improve CAR T cell therapy for multiple myeloma. Our clinical trial uses CAR T cells targeting BCMA as first line therapy for high-risk multiple myeloma to assess whether early use of CAR T cells is safer and more effective than use in patients with relapsed disease. Half of patients will also receive CAR T cells targeting CD19 to assess whether this can improve the duration of response to anti-BCMA CAR T cells. Our goal is to evaluate whether early use of CAR T cells is a safer and more effective way to use CAR T cells for multiple myeloma patients.

Project Term: July 1, 2019 - June 30, 2024

Maria “Ken” Figueroa
University of Miami

Our lab is focused on understanding how age-related epigenetic deregulation contributes to driving the functional decline of the hematopoietic system we see as we age. We are using genome-wide sequencing approaches to understand the changes in human hematopoietic stem and progenitor cells (HSPC) with aging at epigenomic level, along with in vitro and in vivo modeling of key changes that we hypothesize are the responsible drivers of the aging decline phenotype. Our overarching goal is to identify key drivers of functional HSPC decline to ultimately develop methods for modulating these drivers and achieve HSC rejuvenation.

Project Term: July 1, 2018 - June 30, 2023

Areej El-Jawahri
Massachusetts General Hospital

Our goal is to improve sexual function and quality of life for patients with blood cancers undergoing hematopoietic stem cell transplantation. We will conduct a clinical trial to evaluate whether a multi-component intervention to address sexual health and intimacy concerns can improve sexual function and satisfaction as well as quality of life and mood in hematopoietic stem cell transplant survivors. We will also explore whether improvement in sexual function leads to improvement in quality of life in this population. By developing an innovative and potentially scalable model of care to address sexual health issues, we aim to improve the quality of life and survivorship care for patients with blood cancers.

Project Term: July 1, 2019 - June 30, 2024

Lei Ding
Columbia University Medical Center

Bone marrow scar formation (fibrosis) is a hallmark of myelofibrosis and contributes significantly to the disease progression. We use mouse genetics to model myelofibrosis and understand the cellular and molecular makeup of the diseased microenvironment. We aim to understand the composition and alteration of the bone marrow microenvironment in myelofibrosis. This may provide novel therapeutic targets for myelofibrosis.

Project Term: July 1, 2019 - June 30, 2024

Courtney DiNardo
The University of Texas MD Anderson Cancer Center

My ultimate goal is to develop more effective, better tolerated, and individualized treatment for patients with AML. This project focuses on AML patients with IDH1 or IDH2 mutations, with a clinical trial evaluating a combination of three agents which are effective in IDH-mutated AML. While these therapies are not curative on their own, my hope is that this combination will lead to a practice changing all-oral, outpatient, and well-tolerated curative strategy for patients with IDH-mutated AML.

Project Term: October 1, 2021 - September 30, 2026

Matthew Davids
Dana-Farber Cancer Institute

We seek to optimize combination therapy for chronic lymphocytic leukemia with ibrutinib. We will address this question through 2 clinical trials combining ibrutinib with chemoimmunotherapy or an antibody. We will also examine the biology of CLL cells at a genetic and functional level to predict who will have the best response to therapy and to identify resistance mechanisms. Our goal is to develop curative combinations for CLL and to understand resistance in the patients who are not cured.

Project Term: July 1, 2018 - June 30, 2023

Alexey Danilov
Beckman Research Institute of the City of Hope

Mantle cell lymphoma (MCL) is an aggressive blood cancer which affects about 3,000 individuals in the United States annually. Despite advances of novel therapies in blood cancers, MCL remains incurable, and patients ultimately succumb to disease. We seek to evaluate longitudinal samples from patients with MCL treated with novel therapies to understand the mechanisms of drug resistance. We identify novel targets, with a particular focus on protein turnover pathways, to overcome drug resistance and improve survival of patients with MCL.

Project Term: July 1, 2018 - June 30, 2023

Jaehyuk Choi
Northwestern University

Coming soon.

Project Term: July 1, 2021 - June 30, 2026

Jianhua Yu
Beckman Research Institute of the City of Hope

This project is designed to develop a novel cell therapy to treat relapse/refractory multiple myeloma (MM), an incurable cancer. We target BCMA, a protein highly expressed on MM compared to normal cells, with CAR T cells that also secrete a bispecific antibody that can engage all cytolytic cells, including various endogenous T cells, natural killer (NK) cells, and NKT cells to kill MM cells. We aim to complete all preclinical studies so that the therapy is ready for future clinical studies.

Project Term: July 1, 2018 - June 30, 2023

Sisi Chen
Memorial Sloan Kettering Cancer Center

Our research focuses on a novel mechanism of RAS protein regulation via the protein LZTR1, which is altered in leukemia and hinders the effectiveness of leukemia therapies. We will utilize mouse models and functional genomic studies to uncover how altered RAS degradation drives leukemia and identify novel drug targets. This effort will help us identify the clinical impact of alterations in this novel RAS pathway in patients and potential means to improve leukemia treatment.

Project Term: October 1, 2021 - September 30, 2024