413 results

Refine Your Search

Brian Dalton
Johns Hopkins University

Mutations in the spliceosome gene SF3B1 are common in myeloid malignancies, but they are currently untargetable. Our previous work has shown that SF3B1 mutations reprogram energy metabolism and create vulnerability to restriction of the nonessential amino acid serine. Here we propose a preclinical project studying PEGylated cystathioinine beta synthase (pCBS), a recombinant enzyme that catabolizes serine, as a treatment for SF3B1-mutant myeloid malignancies.

Project Term: October 1, 2021 - September 30, 2024

Riccardo Dalla-Favera
Columbia University Medical Center

Novel therapies are needed for ~40% of Diffuse Large B-Cell Lymphoma (DLBCL) patients who do not respond to the standard immune-chemotherapy regimen. Repurposing for DLBCL FDA-approved drugs and other targeted compounds in clinical development may offer a fast-track route to the clinic. Toward this end, we identified inhibitors of the enzyme NAMPT as active against a subset of DLBCL. The goal of this proposal is to thoroughly develop the pre-clinical rationale for NAMPT inhibition against DLBCL.

Project Term: October 1, 2021 - September 30, 2024

Jaehyuk Choi
Northwestern University

Coming soon.

Project Term: July 1, 2021 - June 30, 2026

Dan Vogl
The Trustees of the University of Pennsylvania, Medical Center

We propose laboratory and clinical studies to understand the mechanisms of anti-myeloma activity of tasquinimod, a small molecule inhibitor of S100A9. This proposal is part of an ongoing collaboration between Dr. Yulia Nefedova, whose laboratory studies the myeloma bone marrow microenvironment and its immunosuppressive effects, and Dr. Dan Vogl, whose clinical and translational research program focuses on novel therapies for relapsed and refractory myeloma.

Project Term: July 1, 2019 - June 30, 2022

Selina Chen-Kiang
Weill Cornell Medicine

Overview Title: Longitudinal functional genomics in mantle cell lymphoma therapy and drug resistance Weill Cornell Medicine and Ohio State University PI: Selina Chen-Kiang, Ph.D. co-PI: Peter Martin, M.D. Despite the plethora of therapies available for mantle cell lymphoma (MCL), it remains incurable due to the development of drug resistance. Moreover, each successive treatment failure is associated with a more rapidly proliferating disease and fewer practical treatment options. For example, the BTK inhibitor (BTKi) ibrutinib has unprecedented activity but failure is virtually universal and is associated with dismal outcomes. Understanding the genomic basis and mechanisms for drug resistance in MCL is therefore urgently needed. Our goal is to develop superior therapies for MCL that are practical, well tolerated and amenable to patient stratification, by defining the genomic and the molecular and immunological mechanisms for drug resistance in the context of rationally designed clinical trials with targeted agents. Targeting the cell cycle represents a rational approach to MCL therapy, as dysregulation of CDK4 and aberrant cyclin D1 expression underlie unrestrained proliferation in disease progression. We have demonstrated that induction of prolonged early G1 arrest (pG1) by inhibiting CDK4 with palbociclib not only prevented proliferation of primary MCL cells but also reprogrammed them for killing by clinically relevant targeting agents including ibrutinib and PI3K inhibitors (PI3Ki)s. By longitudinal functional genomics of serial biopsies from MCL patients treated with either palbociclib or ibrutinib we discovered a close association of clinical response with inactivation of PI3K and activation of the tumor suppressor transcription factor FOXO1. Moreover, chromatin remodeling appeared to be the proximal event that reprograms MCL cells in response to CDK4 inhibition. Collectively, our findings suggest that through regulation of PI3K and FOXO1 and the epigenome, induction of pG1 by CDK4 inhibition reprograms MCL for a deeper and more durable clinical response to BTKi and PI3Ki. Supporting this hypothesis, in our phase 1 clinical trial of palbociclib + ibrutinib (PALIBR) in recurrent MCL (N=27) the overall response rate was 67% with 43% complete responses. The responses were rapid and durable; only 2 responding patients have progressed in the 32 months since the trial opened. To further accelerate the development of targeted MCL therapies, we have developed a novel inhibitor for protein arginine methyl transferase 5 (PRMT5), which is dysregulated in MCL and many other human cancers. Inhibition of PRMT5 reverses PRMT5 catalyzed epigenetic marks, restores regulatory pathways and enhances survival of preclinical models of MCL and kills ibrutinib-resistant primary MCL cells. Building on these novel findings and capitalizing on the upcoming multi-center phase 2 PALIBR in recurrent MCL, we propose to investigate drug resistance and develop new strategies that circumvent drug resistance in three integrated projects. Project 1: Development of rational treatment strategies for new and recurrent MCL (PI: Peter Martin, M.D.; co-PI: Jia Ruan, M.D., Ph.D., and Kami Maddocks, M.D.). We aim to develop regimens that can be targeted to the appropriate patient subset, are well tolerated, and can be administered in the community. We will conduct a multicenter feasibility trial of lenalidomide + rituximab (R2)+ durvalumab in untreated MCL with real-time monitoring of MRD. We will explore whether durvalumab can overcome immune-mediated resistance to R2 and whether using MRD to modify therapy improves tolerability and practicality without compromising efficacy. We will also conduct a multicenter phase 2 trial of PALIBR in previously treated MCL to better define patients most likely to benefit from this therapy while providing information on mechanisms of resistance in collaboration with Project 2 and 3. Project 2: Functional genomics and mechanism of drug resistance in MCL (PI: Selina Chen-Kiang, Ph.D.; co-PI: Olivier Elemento, Ph.D., and Lewis Cantley, Ph.D.) The clinical response from the phase 1 clinical trial of PALIBR supports our hypothesis that induction of pG1 by CDK4 inhibition reprograms MCL for a deeper and more durable clinical response. To understand the underlying mechanism, we aim to identify the genomic resistance biomarkers by longitudinal functional genomics in the context of the clinical response to PALIBR in the phase 2 clinical trial in collaboration with Project 1. We will further elucidate the mechanism of pG1 reprograming for ibrutinib vulnerability, and target the therapy vulnerability conferred by the genomic resistance biomarkers discovered in this study, such as targeting PRMT5 in collaboration with Project 3. Project 3: Targeting the epigenome in MCL (PI: Jihye Paik, Ph.D., co-PI: Robert Baiocchi, M.D., Ph.D.). Based on our collective evidence, we hypothesize that dysregulation of PRMT5 and FOXO1 causes epigenetic and gene expression changes promoting MCL proliferation and survival. Thus, targeting PRMT5-regulated epigenome may restore FOXO1-mediated cytotoxic gene expression and induce MCL killing. Our goal is to characterize the epigenetic recruitment of PRMT5 and FOXO1 for mechanism-based targeting of MCL epigenome. We aim to identify direct targets of PRMT5 necessary for MCL proliferation and survival, and to define the role of FOXO1 in killing of MCL cells by targeting the epigenome, in collaboration with Projects 1 and 2. These innovative studies are supported by the Administrative Core, Pathology Core and Genomics, Bioinformatics & Biostatistics Core (organization table appended). In addition, WCM has pledged a match of 1.7 million for the proposed studies as indicated in the letters from Drs. Augustine Choi, Dean of WCM, John Leonard, Interim Chairman of Medicine and Lewis Cantley, Director of the Meyer Cancer Center (appended).

Project Term: January 1, 2018 - December 31, 2022

Jianhua Yu
Beckman Research Institute of the City of Hope

This project is designed to develop a novel cell therapy to treat relapse/refractory multiple myeloma (MM), an incurable cancer. We target BCMA, a protein highly expressed on MM compared to normal cells, with CAR T cells that also secrete a bispecific antibody that can engage all cytolytic cells, including various endogenous T cells, natural killer (NK) cells, and NKT cells to kill MM cells. We aim to complete all preclinical studies so that the therapy is ready for future clinical studies.

Project Term: July 1, 2018 - June 30, 2023

Sisi Chen
Memorial Sloan Kettering Cancer Center

Our research focuses on a novel mechanism of RAS protein regulation via the protein LZTR1, which is altered in leukemia and hinders the effectiveness of leukemia therapies. We will utilize mouse models and functional genomic studies to uncover how altered RAS degradation drives leukemia and identify novel drug targets. This effort will help us identify the clinical impact of alterations in this novel RAS pathway in patients and potential means to improve leukemia treatment.

Project Term: October 1, 2021 - September 30, 2024

Aditi Shastri
Albert Einstein College of Medicine

STAT3 is over-expressed in highly purified leukemic stem & progenitor cells and its expression is associated with a worse prognosis. Inhibition of STAT3 by an anitsense oligonucleotide AZD9150 leads to decreased viability of leukemic stem cells in in vitro & in vivo models. In the proposed studies, we will comprehensively examine the role of STAT3 in AML stem cell dynamics, identify the mechanisms of its actions and determine the efficacy of clinically available STAT3 inhibitors.

Project Term: July 1, 2019 - June 30, 2022

Margaret Shipp
Dana-Farber Cancer Institute

Dr. Shipp and her colleague, Scott J. Rodig, MD, Ph.D., are mapping the immune microenvironment in classical Hodgkin lymphoma.

Project Term: July 1, 2020 - June 30, 2023

Grant Challen
Washington University in St. Louis

We study the mechanisms of clonal hematopoiesis (CH), a process by which mutations provide hematopoietic stem cells (HSCs) with a fitness advantage. CH can precede the development of blood cancer. We use cutting-edge techniques to understand the effects of these mutations on HSC behavior. Our long-term goal is to identify ways to inhibit the growth of these mutant HSCs while sparing normal HSCs in people with CH. This may someday provide a blood cancer prevention method by eliminating the cells which carry the initial cancer-driving mutations.

Project Term: July 1, 2018 - June 30, 2023

Liran Shlush
Weizmann Institute of Science

In the current study we propose, based on our preliminary results, that we can reliably identify pre-AML cases out of the many individuals with age related clonal hematopoiesis (ARCH) based on clinical parameters thereby limiting the population that needs to undergo molecular testing. We have also developed a predictive model that can identify pre-AML cases years before diagnosis. We now propose to utilize this knowledge to treat high-risk individuals with ARCH, at a time point before they have developed disease, by targeting the driving alterations most associated with AML development.

Project Term: July 1, 2018 - June 30, 2023

Jason Butler
Hackensack Meridian Health

We seek to elucidate the mechanisms by which aging of the vascular system contributes to the decline in blood stem cell function and leads to diseases such as hematopoietic malignancies. We have developed novel model systems that have led to the discovery of rejuvenation factors that can restore the functional capacity of an aging blood and vascular system. These studies lay the foundation for the development of therapeutic strategies to not only rejuvenate an aged blood system, but to also give a competitive advantage to non-malignant blood cells while directly targeting cancer cells following chemotherapy regimens commonly utilized to treat hematological malignancies.

Project Term: July 1, 2018 - June 30, 2023