413 results

Refine Your Search

Peng Ji
Northwestern University

Current therapy for MPNs remains suboptimal with ongoing risks for thrombosis. Newer drug such as JAK inhibitor has toxicity and is not curative. New targeted therapy with less side effects is urgently needed in the field. This project focuses on the inhibitors of Plek2, a novel target of MPNs. We have identified lead compounds of Plek2 through screening and medicinal chemistry. We propose to further study the mechanisms of action of the inhibitors and perform in vivo studies using MPN models.

Project Term: July 1, 2019 - June 30, 2022

Peng Ji
Northwestern University

Our research focuses on the study of a novel therapeutic target, named Plek2, in the development of myeloproliferative neoplasms (MPNs). MPNs can progress to leukemia and there are currently no cures. We use animal models and patient samples to study how elevated levels of Plek2 causes the disease and identify approaches to suppress the function of Plek2. Our goal is to use the knowledge from this study to develop novel therapies to treat MPNs.

Project Term: July 1, 2017 - June 30, 2022

Catriona Jamieson
The Regents of the University of California, San Diego

Dr. Jamieson is examining the role of two enzymes (APOBEC3 and ADAR1) known to mutate DNA and RNA, and their role in acute myeloid leukemia (AML) and disease relapse, particularly in elderly patients.

Project Term: July 1, 2020 - June 30, 2023

Caron Jacobson
Dana-Farber Cancer Institute

CAR T-cells are highly effective in lymphoma but limited by a profound and potentially fatal toxicity involving the central nervous system (CNS). Little is known about how CAR T-cells eliminate lymphoma cells in the CNS nor how this therapy causes toxicity. I will study CAR T-cells in patients with CNS lymphomas with the goal of expanding CAR T-cell indications. I will also examine serial blood and CNS samples to understand neurologic toxicity to inform new therapies to control this toxicity.

Project Term: October 1, 2021 - September 30, 2026

Kerry Rogers
The Ohio State University

Ibrutinib is a targeted oral treatment for CLL that is safe and highly effective, however it must be given indefinitely which leads to chronic side effects and allows resistance to develop. We are conducting two clinical trials that add a second drug to ibrutinib to eliminate the remaining leukemia or ibrutinib-resistant leukemia cells. If these trials are successful, people taking CLL with or without resistance may be able to stop treatment in remission after taking an ibrutinib combination.

Project Term: July 1, 2019 - June 30, 2024

Keisuke Ito
Albert Einstein College of Medicine

Enhancing the commitment of leukemia stem cells (LSCs) is a promising therapeutic strategy against blood cancer, but tracking the division pattern of individual cells has proved difficult. We have established a novel technical regimen to assess the behavior of individual LSCs and their cell fate in vivo. Genetic mouse models and mouse models engrafted with leukemia patient samples are also used. Our project seeks to elucidate the role of mitophagy in the control of LSC division balance, which may facilitate new therapy targeting these cells.

Project Term: July 1, 2018 - June 30, 2023

Helen Heslop
Baylor College of Medicine

The overall goal of this SCOR proposal is to develop and clinically validate T-cell immunotherapies designed to produce antitumor activity without the toxicities associated with intensive chemotherapy. The effectiveness of T-cell immunotherapy for leukemia and lymphoma has now been amply demonstrated. Studies conducted in our previous SCOR have already led to multicenter trials and orphan drug designation of EBV-specific T cells for the treatment of EBV-positive NHL and to commercial licensing of our genetically modified T cells and a genetic safety switch engineered into effector T cells.

Project Term: October 1, 2018 - September 30, 2023

Rizwan Romee
Dana-Farber Cancer Institute

Coming soon.

Project Term: July 1, 2021 - June 30, 2026

Michael Rout
Rockefeller University

This project will generate optimized single-chain antibodies (nanobodies) against HVEM and BTLA, two cell receptors that are misregulated in ~75% of follicular lymphomas. We will select for nanobodies that inhibit lymphoma tumor growth through restoration of HVEM or BTLA activity. We will further engineer lymphoma-targeted CAR-T cells, which have shown anti-tumor activity in other malignancies, to secrete these anti-HVEM or anti-BTLA nanobodies, in an alternative combination therapy approach.

Project Term: July 1, 2019 - June 30, 2022

Kathleen Sakamoto
Stanford University

Niclosamide is an FDA approved anti-parasitic drug that is well tolerated in adults and children. AML cells are sensitive to niclosamide, act synergistically with chemotherapy in vitro, and inhibit the proliferation of primary AML stem cells in vivo. We propose to examine the effects of niclosamide in combination with chemotherapy in animal models of AML and study the mechanism of action of niclosamide in AML cells in anticipation of a clinical trial in children with relapsed AML.

Project Term: July 1, 2019 - June 30, 2022

Michael Savona
Vanderbilt University Medical Center

Apoptosis is a normal cellular process of getting rid of extra cells that is co-opted by cancer cells to enhance their own survival, and we aim to better understand this process in myelodysplastic syndromes (MDS). Pevonedistat (PEV) is a novel therapy presumed to function, in part, through its effects on apoptosis. Our clinical trial will combine PEV with the standard of care therapy for MDS, azacitidine, in order to keep cancer cells from hijacking apoptosis, and we will study patient samples to match responses with molecular changes in the cancer cells. We seek to determine the suitability of this approach for MDS, and the ability to predict which patients may respond to PEV-based therapy.

Project Term: July 1, 2018 - June 30, 2023

Michael Savona
Vanderbilt University Medical Center

Vanderbilt-Ingram Cancer Center (VICC) is the only NCI designated cancer center that serves both adult and pediatric populations in TN, one of the highest cancer-mortality states in the country. In fact, TN rural dwellers encompass about 30-50% of the states’ population, many with lower per-capita income and high school graduation rates. Influencing cancer care by facilitating underserved and minority populations to access therapeutic clinical trials as well as those focused on screening and prevention strategies remains a cornerstone objective. The Vanderbilt Health Affiliated Network (VHAN) serves as the largest provider for an organized network of hospitals, clinics, and health systems across TN. This network encompasses 12 health systems and 61 hospitals. Within VHAN, the VICC has had a formal affiliation with Baptist Memorial Healthcare Corporation (BMHCC) since 2012. BMHCC is affiliated with 22 hospitals and provides care for 8000 new cancer patients (pts) annually covering 111 counties totaling 4.3 million people. This includes 44% of the 252 counties and parishes in the Delta Regional Authority, congressionally acknowledged as the most indigent population in the US. The primary objective of the VICC community center affiliation with BMHCC is to enhance the regional level of cancer care and to advance cancer research efforts. VICC has provided guidance on a regular basis to assist BMHCC in the establishment and implementation of the Minority and Underserved National Cancer Institute Community Oncology Research Program (NCORP) grant as a successful and sustainable program. BMHCC has become amongst the top recruitment sites for NCORP, with steady growth in the proportion of rural pts seen across the health system. VICC continues to be a resource for BMHCC on providing consultations, training, and best practices for specialized services such as clinical research, radiation oncology, cancer screening, stem cell transplantation and community engagement.

Project Term: April 1, 2021 - March 31, 2026