Funding from The Leukemia & Lymphoma Society (LLS) can lead to scientific breakthroughs that will improve and save the lives of patients.
The LLS Research Team oversees the organization's research stray to support cutting-edge research for every type of blood cancer, including leukemia, lymphoma, myeloma.
Take a look at the current active, extraordinary LLS-funded research projects.
337 results
Refine Your Search
Perelman School of Medicine at the University of Pennsylvania
Advances in multiple myeloma (MM) therapy have improved survival, but serial cycles of response and relapse still lead to treatment-refractory and fatal disease in nearly all patients. To specifically target mechanisms of MM relapse, we propose to develop an immunotherapy targeting Sox2, a stem-cell transcription factor implicated in clonogenic MM growth that enables relapse.
Project Term: July 1, 2022 - June 30, 2025
Perelman School of Medicine at the University of Pennsylvania
This proposal seeks to develop for the first time in humans a novel CD5 knocked out (KO) anti-CD5 chimeric antigen receptor T cell (CART) product for patients with relapsed or refractory T-cell lymphomas. In Aim#1, we will generate and test a clinical-grade CD5 KO CART5 product, and in Aim#2, we will perform a phase I clinical trial. This project is highly relevant to those parts of the LLS's mission that pertain to the development of personalized and novel therapies for cancer treatment.
Project Term: July 1, 2022 - June 30, 2025
University of British Columbia
Our team is the first to develop a polyomic pediatric cGvHD biomarker test for assessing the risk of developing cGvHD. A cooperative adult phase III clinical trial, CTTC1901, between Canada and Australia, focused on decreasing cGvHD (N=350 patients), offers an ideal opportunity to validate adult cGvHD biomarkers. This proposal will utilize the pediatric polyomic approach to validate a cGvHD risk assignment and diagnostic algorithm in adult hematopoietic stem cell transplant (HSCT).
Project Term: July 1, 2022 - June 30, 2025
The University of New South Wales
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy that is exceptionally difficult to cure after relapse. We have previously shown that T-ALL expresses high levels of the enzyme AKR1C3, leading to clinical trials of AKR1C3-activated prodrugs. This project will focus on identifying the determinants of responses to AKR1C3-activated prodrugs in T-ALL and optimizing the use of a second generation AKR1C3-activated prodrug, SN36008, in T-ALL patient-derived xenografts.
Project Term: July 1, 2022 - June 30, 2025