337 results

Refine Your Search

Megan McNerney
The University of Chicago

The long-term goal of my research program is to improve the outcomes for patients with high-risk myeloid blood cancers, particularly those with loss of chromosome 7 or CUX1. We are tackling this question using an arsenal of innovative methods and tools, including mouse models, human cells and patient samples, and state-of-the-art technologies to examine the cancer cell genome. Accomplishing this work will reveal new treatments and strategies for preventing blood cancers from arising.

Project Term: July 1, 2022 - June 30, 2027

Yibin Yang
Fox Chase Cancer Center

My lab is focused on the immune regulatory mechanisms and ubiquitin-dependent machinery in lymphoma. We have established multiple high-throughput screening technologies and animal models to rapidly and accurately identify critical pathways that are suitable for targeted therapy and immunotherapy. Gaining insight into the pathological roles of these pathways can lead to improved understandings of the molecular circuitry that drives lymphoma pathogenesis and provide novel therapeutic strategies.

Project Term: July 1, 2022 - June 30, 2027

Julia Maxson
Oregon Health & Science University

Our research program is focused on understanding the intersection between signaling and transcriptional dysfunction in myeloid leukemias. We leverage murine models, cell lines and human samples to uncover how biological context shapes the manifestation of oncogenic programs at the molecular level. Our long-term goal is to harness this knowledge to identify multipronged therapeutic strategies that improve outcomes for patients with myeloid malignancies.

Project Term: July 1, 2022 - June 30, 2027

Coleman Lindsley
Dana-Farber Cancer Institute

Our central goal is to improve clinical outcomes in patients with myeloid malignancies through developing an enhanced mechanistic understanding of disease. We use multiomic analyses of primary patient samples combined with complementary laboratory models using mice and cell lines to generate and test our hypotheses. The results of our studies will help improve patient outcomes by identifying strategies to mitigate risk of disease progression/relapse and treatment toxicity.

Project Term: July 1, 2022 - June 30, 2027