337 results

Refine Your Search

Jayna Mistry
The Jackson Laboratory

This project focuses on how age-associated clonal hematopoiesis (CH) alters the bone marrow (BM) microenvironment, and whether this promotes transformation of CH to acute myeloid leukemia (AML). I will utilize single cell RNA-seq data, genetic knockout models, and targeted inhibitors to perturb the non-hematopoietic and hematopoietic compartments of a mouse model of CH. The goal is to determine if manipulation of the BM microenvironment can attenuate CH and prevent AML transformation.

Project Term: July 1, 2023 - June 30, 2026

Christian Marinaccio
Dana-Farber Cancer Institute

MLL1/KMT2A rearranged leukemias are the most common blood cancer occurring in children characterized by dismal prognosis. Given the importance of fusion proteins in driving the disease, I will determine factors affecting the fusion protein stability through a CRISPR/Cas9 screening approach in an innovative model system where the MLL fusions are endogenously tagged with a fluorescent protein. This will facilitate development of molecular glue degraders specifically targeting the MLL fusions.

Project Term: July 1, 2023 - June 30, 2026

Trent Hall
St. Jude Children's Research Hospital

GATA2 deficiency is an inherited pediatric syndrome with a high rate of progression to myeloid malignancy, the mechanisms of which remain largely undefined. Here, we will use our recently generated mouse model, Gata2R396Q, to determine the effects of GATA2 deficiency on hematopoietic function and identify novel drivers of myeloid malignancy via focused CRISPR screens. Our work will provide further insight into the mechanisms driving leukemic progression of this syndrome.

Project Term: July 1, 2023 - June 30, 2026

Kehan Ren
Northwestern University

We aim to understand the mechanism of how dysregulated Gasdermin D(GSDMD) protein propels the pathogenesis of myelodysplastic syndromes(MDS). With single-cell sequencing and patient-derived xenograft (PDX) mouse models, we want to provide pre-clinical grade data to support the concept of inhibiting GSDMD as an effective therapeutic approach in the treatment of MDS. We expect to see the great beneficial effects of GSDMD inhibition in MDS mouse models and PDX mouse models using FDA-approved drugs.

Project Term: July 1, 2023 - June 30, 2025