Funding from The Leukemia & Lymphoma Society (LLS) can lead to scientific breakthroughs that will improve and save the lives of patients.
The LLS Research Team oversees the organization's research stray to support cutting-edge research for every type of blood cancer, including leukemia, lymphoma, myeloma.
Take a look at the current active, extraordinary LLS-funded research projects.
337 results
Refine Your Search
The George Washington University
Telehealth could improve access for Medicaid patients with a blood cancer who experience barriers to specialty care, but not all specialists offer it. Using Medicaid data, this study will provide novel information on whether blood cancer specialists are continuing to use telehealth following the COVID-19 pandemic when telehealth use increased dramatically. This study will also examine if telehealth helps address inequities in access to specialists, including for racial/ethnic minoritized groups and those living in rural areas.
Project Term: July 1, 2024 - June 30, 2027
Columbia University Irving Medical Center
Overexpression of ID2 is a recurrent event in mature T-cell lymphoma (TCL), and its significance is yet to be established. We will use a multidisciplinary approach combining epigenetic, transcriptomic, and proteomic analysis in human and murine models to identify the mechanisms leading to ID2 overexpression and their effect on T-cell transformation. Our goal is to define the role of ID2 in lymphomagenesis and determine its potential as a novel therapeutic target in TCL.
Project Term: July 1, 2024 - June 30, 2026
Fox Chase Cancer Center
This study will implement a skill-based didactic course for providers to improve the quality of communication around structural racism, mistrust, implicit biases, and clinical trial counseling. This study will also implement a culturally competent, specialized clinical trials nurse navigation program that connects patients to educational resources around clinical trials and standardizes pre-screening for new patients prior to the initial clinic visit.
Project Term: July 1, 2024 - June 30, 2029
Washington University in St. Louis
My goal is to understand how cancer-associated gene fusions arise and cause disease. Specifically, I am studying how oncogenic fusions involving the gene KMT2A arise in different hematopoietic cell-types and how developmental context drives the development of leukemia. My long-term goals are to leverage an increased fundamental understanding of leukemogenesis provided by this research to improve treatment and lengthen lifespan for patients with KMT2A fusion-driven leukemias.
Project Term: July 1, 2024 - June 30, 2027